Adversarial Examples of Deep Learning
Paper
Intriguing properties of neural networks
- arXiv: http://arxiv.org/abs/1312.6199
- my notes: In each layer of a deep network it is the “direction” of “space” (ensemble of feature activations) which encodes useful class information rather than individual units (feature activations).
Generative Adversarial Networks
- arXiv: http://arxiv.org/abs/1406.2661
- github: https://github.com/goodfeli/adversarial
- github: https://github.com/aleju/cat-generator
Generative Adversarial Autoencoders in Theano
- blog: https://swarbrickjones.wordpress.com/2016/01/24/generative-adversarial-autoencoders-in-theano/
- github: https://github.com/mikesj-public/dcgan-autoencoder
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Explaining and Harnessing Adversarial Examples
- introduction: primary cause of neural networks’ vulnerability to adversarial perturbation is their linear nature
- paper: http://arxiv.org/abs/1412.6572
Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks(NIPS 2015)
- arXiv: http://arxiv.org/abs/1506.05751
- code: http://soumith.ch/eyescream/
- project page: http://soumith.ch/eyescream/
- homepage: http://www.cs.nyu.edu/~denton/
- notes: http://colinraffel.com/wiki/deep_generative_image_models_using_a_laplacian_pyramid_of_adversarial_networks
Conditional generative adversarial nets for convolutional face generation
- paper: http://www.foldl.me/uploads/2015/conditional-gans-face-generation/paper.pdf
- blog: http://www.foldl.me/2015/conditional-gans-face-generation/
- github: https://github.com/hans/adversarial
Distributional Smoothing with Virtual Adversarial Training
Confusing Deep Convolution Networks by Relabelling
Exploring the Space of Adversarial Images
Learning with a Strong Adversary
Adversarial Autoencoders
- arXiv: http://arxiv.org/abs/1511.05644
- slides: https://docs.google.com/presentation/d/1Lyp91JOSzXo0Kk8gPdgyQUDuqLV_PnSzJh7i5c8ZKjs/edit?pref=2&pli=1
- notes(by Dustin Tran): http://dustintran.com/blog/adversarial-autoencoders/
- TFD manifold: http://www.comm.utoronto.ca/~makhzani/adv_ae/tfd.gif
- SVHN style manifold: http://www.comm.utoronto.ca/~makhzani/adv_ae/svhn.gif
Understanding Adversarial Training: Increasing Local Stability of Neural Nets through Robust Optimization
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks (DCGAN)
- arxiv: http://arxiv.org/abs/1511.06434
- github: https://github.com/Newmu/dcgan_code
- github: https://github.com/mattya/chainer-DCGAN
- github: https://github.com/soumith/dcgan.torch
- github: https://github.com/carpedm20/DCGAN-tensorflow
Blog
(Deep Learning’s Deep Flaws)’s Deep Flaws (By Zachary Chase Lipton)
http://www.kdnuggets.com/2015/01/deep-learning-flaws-universal-machine-learning.html
Deep Learning Adversarial Examples – Clarifying Misconceptions (By Ian Goodfellow (Google))
http://www.kdnuggets.com/2015/07/deep-learning-adversarial-examples-misconceptions.html
Torch convolutional GAN: Generating Faces with Torch
Adversarial Machines: Fooling A.Is (and turn everyone into a Manga)
https://medium.com/@samim/adversarial-machines-998d8362e996#.iv3muefgt
How to trick a neural network into thinking a panda is a vulture
https://codewords.recurse.com/issues/five/why-do-neural-networks-think-a-panda-is-a-vulture
Code
Generate cat images with neural networks