Deep Learning Frameworks
- Apache SINGA
- Blocks
- BrainCore
- Brainstorm
- Caffe
- Chainer
- CNTK
- ConvNetJS
- DeepBeliefSDK
- DeepDetect
- Deeplearning4j (DL4J)
- DeepLearningKit
- DeepSpark
- DIGITS
- dp
- IDLF
- Keras
- Lasagne
- Leaf
- Marvin
- Mocha.jl
- MXNet
- neocortex.js
- Neon
- OpenNN
- Petuum
- Platoon
- Poseidon
- Purine
- TensorFlow
- Theano
- Torch
- VELES
- Benchmarks
- Papers
- Codes
- References
Apache SINGA
- project-website: http://singa.incubator.apache.org/
- github: https://github.com/apache/incubator-singa
- paper: http://www.comp.nus.edu.sg/~ooibc/singaopen-mm15.pdf
Blocks
Blocks: A Theano framework for building and training neural networks
Blocks and Fuel: Frameworks for deep learning
BrainCore
BrainCore: The iOS and OS X neural network framework
https://github.com/aleph7/BrainCore
Brainstorm
Brainstorm: Fast, flexible and fun neural networks
Caffe
Caffe: Convolutional Architecture for Fast Feature Embedding
- github: https://github.com/BVLC/caffe
- paper: http://arxiv.org/abs/1408.5093
- tutorial: http://tutorial.caffe.berkeleyvision.org/
- slides: http://vision.stanford.edu/teaching/cs231n/slides/caffe_tutorial.pdf
- slides: http://vision.princeton.edu/courses/COS598/2015sp/slides/Caffe/caffe_tutorial.pdf
- caffe-doc: http://caffe.berkeleyvision.org/doxygen/index.html
- tutorials(“CAFFE with CUDA”): http://pan.baidu.com/s/1i4kmpyH
- blog(“Convolution in Caffe: a memo”): https://github.com/Yangqing/caffe/wiki/Convolution-in-Caffe:-a-memo
Caffe on both Linux and Windows
ApolloCaffe: a fork of Caffe that supports dynamic networks
- homepage: http://apollocaffe.com/
- github: http://github.com/Russell91/apollocaffe
fb-caffe-exts: Some handy utility libraries and tools for the Caffe deep learning framework
Caffe-Android-Lib: Porting caffe to android platform
caffe-android-demo: An android caffe demo app exploiting caffe pre-trained ImageNet model for image classification
DIY Deep Learning for Vision: a Hands-On Tutorial with Caffe
OpenCV 3.0.0-dev: Load Caffe framework models
http://docs.opencv.org/master/d5/de7/tutorial_dnn_googlenet.html#gsc.tab=0
Chainer
Chainer: a neural network framework
- website: http://chainer.org/
- github: https://github.com/pfnet/chainer
- benchmark: http://chainer.readthedocs.org/en/latest/comparison.html
Introduction to Chainer: Neural Networks in Python
- blog: http://multithreaded.stitchfix.com/blog/2015/12/09/intro-to-chainer/
- github: https://github.com/stitchfix/Algorithms-Notebooks
CNTK
CNTK: Computational Network Toolkit
- github: https://github.com/Microsoft/CNTK
- book: http://research.microsoft.com/pubs/226641/CNTKBook-20160121.pdf
- tutorial: http://research.microsoft.com/en-us/um/people/dongyu/CNTK-Tutorial-NIPS2015.pdf
An Introduction to Computational Networks and the Computational Network Toolkit
http://research.microsoft.com/apps/pubs/?id=226641
ConvNetJS
ConvNetJS: Deep Learning in Javascript. Train Convolutional Neural Networks (or ordinary ones) in your browser
DeepBeliefSDK
DeepBeliefSDK: The SDK for Jetpac’s iOS, Android, Linux, and OS X Deep Belief image recognition framework
- github: https://github.com/jetpacapp/DeepBeliefSDK
- demo: https://github.com/jetpacapp/Jetpac-Deep-Belief-Demo-App
- demo: https://github.com/jetpacapp/Jetpac-Deep-Belief-Learner-Demo-App
DeepDetect
DeepDetect: Open Source API & Deep Learning Server
- webiste: http://www.deepdetect.com/
- github: https://github.com/beniz/deepdetect
Deeplearning4j (DL4J)
Deeplearning4j: Deep Learning for Java
- website: http://deeplearning4j.org/
DeepLearningKit
DeepLearningKit: Open Source Deep Learning Framework for Apple’s tvOS, iOS and OS X
Tutorial — Using DeepLearningKit with iOS for iPhone and iPad
DeepSpark
DeepSpark: Deeplearning framework running on Spark
- github: https://github.com/deepspark/deepspark
- homepage: http://deepspark.snu.ac.kr/
- arxiv: http://arxiv.org/abs/1602.08191
DIGITS
DIGITS: the Deep Learning GPU Training System
- github: https://github.com/NVIDIA/DIGITS
dp
dp: A deep learning library for streamlining research and development using the Torch7 distribution
- github: https://github.com/nicholas-leonard/dp
- manual: https://dp.readthedocs.org/en/latest/
- manual: https://github.com/nicholas-leonard/dp/blob/master/doc/index.md
IDLF
IDLF: The Intel® Deep Learning Framework
- website: https://01.org/zh/intel-deep-learning-framework?langredirect=1
- github: https://github.com/01org/idlf
Keras
Keras: Theano-based Deep Learning library
Lasagne
Lasagne: Lightweight library to build and train neural networks in Theano
- github: https://github.com/Lasagne/Lasagne
- homepage: http://lasagne.readthedocs.org/en/latest/
Leaf
Leaf: The Hacker’s Machine Learning Engine
Marvin
Marvin: A minimalist GPU-only N-dimensional ConvNet framework
- website: http://marvin.is/
- github: https://github.com/PrincetonVision/marvin
Mocha.jl
Mocha.jl: Deep Learning for Julia
- website: http://devblogs.nvidia.com/parallelforall/mocha-jl-deep-learning-julia/
- github: https://github.com/pluskid/Mocha.jl
MXNet
MXNet
- github: https://github.com/dmlc/mxnet
- paper: https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/paper/mxnet-learningsys.pdf
a short introduction to mxnet design and implementation (chinese)
- github: https://github.com/dmlc/mxnet/blob/master/doc/overview_chn.md
- github-issues: https://github.com/dmlc/mxnet/issues/797
Deep learning for hackers with MXnet (1) GPU installation and MNIST
https://no2147483647.wordpress.com/2015/12/07/deep-learning-for-hackers-with-mxnet-1/
mxnet_Efficient, Flexible Deep Learning Framework
Deep Learning in a Single File for Smart Devices
https://mxnet.readthedocs.org/en/latest/tutorial/smart_device.html
用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别
http://phunter.farbox.com/post/mxnet-tutorial1
用MXnet实战深度学习之二:Neural art
http://phunter.farbox.com/post/mxnet-tutorial2
Programming Models and Systems Design for Deep Learning
- video: http://research.microsoft.com/apps/video/default.aspx?id=262396
- video: http://pan.baidu.com/s/1mgSnj64
Awesome MXNet
- intro: This page contains a curated list of awesome MXnet examples, tutorials and blogs.
- github: https://github.com/dmlc/mxnet/blob/master/example/README.md
Getting Started with MXNet
https://indico.io/blog/getting-started-with-mxnet/
neocortex.js
Run trained deep neural networks in the browser or node.js
- homepage: http://scienceai.github.io/neocortex/
- github: https://github.com/scienceai/neocortex
Neon
Neon: Nervana’s Python-based deep learning library
- website: http://neon.nervanasys.com/docs/latest/index.html
- github: https://github.com/NervanaSystems/neon
Tools to convert Caffe models to neon’s serialization format
OpenNN
OpenNN - Open Neural Networks Library
- homepage: http://opennn.net/
- github: https://github.com/artelnics/opennn
Petuum
Petuum: a distributed machine learning framework
- website: http://petuum.github.io/
- github: https://github.com/petuum/bosen
Platoon
Platoon: Multi-GPU mini-framework for Theano
Poseidon
Poseidon: Distributed Deep Learning Framework on Petuum
Purine
Purine: A bi-graph based deep learning framework
- github: https://github.com/purine/purine2
- arXiv: http://arxiv.org/abs/1412.6249
TensorFlow
TensorFlow
- website: http://tensorflow.org/
- whitepaper: http://download.tensorflow.org/paper/whitepaper2015.pdf
- github: https://github.com/tensorflow/tensorflow
- github: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/distributed_runtime
- tutorial: http://tensorflow.org/tutorials
- tutorial: https://github.com/nlintz/TensorFlow-Tutorials
- stackoverflow: https://stackoverflow.com/questions/tagged/tensorflow
- benchmark: https://github.com/soumith/convnet-benchmarks/issues/66
- tutorial-zh: https://github.com/jikexueyuanwiki/tensorflow-zh
TensorDebugger(TDB): Interactive, node-by-node debugging and visualization for TensorFlow
- github: https://github.com/ericjang/tdb
ofxMSATensorFlow: OpenFrameworks addon for Google’s data-flow graph based numerical computation / machine intelligence library TensorFlow.
Installing TensorFlow on Raspberry Pi 3 (and probably 2 as well)
LearningTensorFlow.com: A beginners guide to a powerful framework. - homepge: http://learningtensorflow.com/index.html
TFLearn: Deep learning library featuring a higher-level API for TensorFlow
- github: https://github.com/tflearn/tflearn
- homepage: http://tflearn.org/
Theano
Theano
- website: http://deeplearning.net/software/theano/index.html
- github: https://github.com/Theano/Theano
- tutorial: https://github.com/Newmu/Theano-Tutorials
Configuring Theano For High Performance Deep Learning
http://www.johnwittenauer.net/configuring-theano-for-high-performance-deep-learning/
Theano: a short practical guide
- slides: http://folinoid.com/show/theano/
Torch
Torch
- website: http://torch.ch/
- github: https://github.com/torch/torch7
- cheatsheet: https://github.com/torch/torch7/wiki/Cheatsheet
- tutorials(“Getting started with Torch”): [http://torch.ch/docs/getting-started.html#](http://torch.ch/docs/getting-started.html#)
loadcaffe: Load Caffe networks in Torch7
Applied Deep Learning for Computer Vision with Torch
- homepage: https://github.com/soumith/cvpr2015
VELES
VELES: Distributed platform for rapid Deep learning application development
- website: https://velesnet.ml/
- github: https://github.com/Samsung/veles
- workflow: https://velesnet.ml/forge/forge.html
Benchmarks
https://github.com/soumith/convnet-benchmarks
Papers
Comparative Study of Caffe, Neon, Theano, and Torch for Deep Learning
Codes
TensorFuse: Common interface for Theano, CGT, and TensorFlow
References
Frameworks and Libraries for Deep Learning
http://creative-punch.net/2015/07/frameworks-and-libraries-for-deep-learning/
TensorFlow vs. Theano vs. Torch
https://github.com/zer0n/deepframeworks/blob/master/README.md
Evaluation of Deep Learning Toolkits
https://github.com/zer0n/deepframeworks/blob/master/README.md
Deep Machine Learning libraries and frameworks
Torch vs Theano
Deep Learning Software: NVIDIA Deep Learning SDK
https://developer.nvidia.com/deep-learning-software
A comparison of deep learning frameworks
- intro: Theano/CGT/Torch/MXNet
- gist: https://gist.github.com/bartvm/69adf7aad100d58831b0
- webo: http://weibo.com/p/1001603946281180481229
TensorFlow Meets Microsoft’s CNTK
Is there a case for still using Torch, Theano, Brainstorm, MXNET and not switching to TensorFlow?
- reddit: [https://www.reddit.com/r/MachineLearning/comments/47qh90/is_there_a_case_for_still_using_torch_theano/][https://www.reddit.com/r/MachineLearning/comments/47qh90/is_there_a_case_for_still_using_torch_theano/]
DL4J vs. Torch vs. Theano vs. Caffe vs. TensorFlow
http://deeplearning4j.org/compare-dl4j-torch7-pylearn.html