Multi What?
Multi-label Learning
CNN: Single-label to Multi-label
Deep Learning for Multi-label Classification
Predicting Unseen Labels using Label Hierarchies in Large-Scale Multi-label Learning(ECML2015)
- paper: https://www.kdsl.tu-darmstadt.de/fileadmin/user_upload/Group_KDSL/PUnL_ECML2015_camera_ready.pdf
Learning with a Wasserstein Loss
- arXiv: http://arxiv.org/abs/1506.05439
- project page: http://cbcl.mit.edu/wasserstein/
- code: http://cbcl.mit.edu/wasserstein/yfcc100m_labels.tar.gz
- MIT news: http://news.mit.edu/2015/more-flexible-machine-learning-1001
From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification
Multi-task Learning
http://www.cs.cornell.edu/~kilian/research/multitasklearning/multitasklearning.html
multi-task learning
- discussion: https://github.com/memect/hao/issues/93
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
- intro: training a convolutional network to simultaneously classify, locate and detect objects in images can boost the classification accuracy and the detection and localization accuracy of all tasks
- arXiv: http://arxiv.org/abs/1312.6229
- code: https://github.com/sermanet/OverFeat
- code: http://cilvr.nyu.edu/doku.php?id=software:overfeat:start
Learning and Transferring Multi-task Deep Representation for Face Alignment
Multi-task learning of facial landmarks and expression
Heterogeneous multi-task learning for human pose estimation with deep convolutional neural network
Deep Joint Task Learning for Generic Object Extraction(NIPS2014)
- homepage: http://vision.sysu.edu.cn/projects/deep-joint-task-learning/
- paper: http://ss.sysu.edu.cn/~ll/files/NIPS2014_JointTask.pdf
- github: https://github.com/xiaolonw/nips14_loc_seg_testonly
- dataset: http://objectextraction.github.io/
Learning deep representation of multityped objects and tasks
Multi-modal Learning
Multimodal Deep Learning
Multimodal Convolutional Neural Networks for Matching Image and Sentence
- homepage: http://mcnn.noahlab.com.hk/project.html
- paper: http://mcnn.noahlab.com.hk/ICCV2015.pdf
- arXiv: http://arxiv.org/abs/1504.06063