Object Detection

Published: 09 Oct 2015 Category: deep_learning

Papers

Deep Neural Networks for Object Detection

OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks

method ILSVRC 2013 mAP
OverFeat 24.3%

R-CNN

Rich feature hierarchies for accurate object detection and semantic segmentation(R-CNN)

method VOC 2007 mAP VOC 2010 mAP VOC 2012 mAP ILSVRC 2013 mAP
R-CNN,AlexNet 54.2% 50.2% 49.6%  
R-CNN,bbox reg,AlexNet 58.5% 53.7% 53.3% 31.4%
R-CNN,bbox reg,ZFNet 59.2%      
R-CNN,VGG-Net 62.2%      
R-CNN,bbox reg,VGG-Net 66.0%      

MultiBox

Scalable Object Detection using Deep Neural Networks (MultiBox)

SPP-Net

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

method VOC 2007 mAP ILSVRC 2013 mAP
SPP_net(ZF-5),1-model 54.2% 31.84%
SPP_net(ZF-5),2-model 60.9%  
SPP_net(ZF-5),6-model   35.11%

Learning Rich Features from RGB-D Images for Object Detection and Segmentation

Scalable, High-Quality Object Detection

DeepID-Net

DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection

method VOC 2007 mAP ILSVRC 2013 mAP
DeepID-Net 64.1% 50.3%

Object Detection Networks on Convolutional Feature Maps

method Trained on mAP
NoC 07+12 68.8%
NoC,bb 07+12 71.6%
NoC,+EB 07+12 71.8%
NoC,+EB,bb 07+12 73.3%

Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction

Model BBoxReg? VOC 2007 mAP(IoU>0.5)
R-CNN(AlexNet) No 54.2%
R-CNN(VGG) No 60.6%
+StructObj No 61.2%
+StructObj-FT No 62.3%
+FGS No 64.8%
+StructObj+FGS No 65.9%
+StructObj-FT+FGS No 66.5%
Model BBoxReg? VOC 2007 mAP(IoU>0.5)
R-CNN(AlexNet) Yes 58.5%
R-CNN(VGG) Yes 65.4%
+StructObj Yes 66.6%
+StructObj-FT Yes 66.9%
+FGS Yes 67.2%
+StructObj+FGS Yes 68.5%
+StructObj-FT+FGS Yes 68.4%

Fast R-CNN

Fast R-CNN

method data VOC 2007 mAP
FRCN,VGG16 07 66.9%
FRCN,VGG16 07+12 70.0%
method data VOC 2010 mAP
FRCN,VGG16 12 66.1%
FRCN,VGG16 07++12 68.8%
method data VOC 2012 mAP
FRCN,VGG16 12 65.7%
FRCN,VGG16 07++12 68.4%

DeepBox

DeepBox: Learning Objectness with Convolutional Networks

MR-CNN

Object detection via a multi-region & semantic segmentation-aware CNN model (MR-CNN)

Model Trained on VOC 2007 mAP
VGG-net 07+12 78.2%
VGG-net 07 74.9%
Model Trained on VOC 2012 mAP
VGG-net 07+12 73.9%
VGG-net 12 70.7%

Faster R-CNN

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(NIPS 2015)

  training data test data mAP time/img
Faster RCNN, VGG-16 07 VOC 2007 test 69.9% 198ms
Faster RCNN, VGG-16 07+12 VOC 2007 test 73.2% 198ms
Faster RCNN, VGG-16 12 VOC 2007 test 67.0% 198ms
Faster RCNN, VGG-16 07++12 VOC 2007 test 70.4% 198ms

YOLO

You Only Look Once: Unified, Real-Time Object Detection(YOLO)

R-CNN minus R

DenseBox

DenseBox: Unifying Landmark Localization with End to End Object Detection

SSD

SSD: Single Shot MultiBox Detector

Inside-Outside Net

Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks

Detection results on VOC 2007 test:

Method R S W D Train mAP
FRCN         07+12 70.0
RPN         07+12 73.2
MR-CNN       07+12 78.2
ION         07+12 74.6
ION       07+12 75.6
ION     07+12+S 76.5
ION   07+12+S 78.5
ION 07+12+S 79.2

Detection results on VOC 2012 test:

Method R S W D Train mAP
FRCN         07++12 68.4
RPN         07++12 70.4
FRCN+YOLO         07++12 70.4
HyperNet         07++12 71.4
MR-CNN       07+12 73.9
ION 07+12+S 76.4

G-CNN

G-CNN: an Iterative Grid Based Object Detector

Learning Deep Features for Discriminative Localization

Factors in Finetuning Deep Model for object detection

We don’t need no bounding-boxes: Training object class detectors using only human verification

Specific Object Deteciton

End-to-end people detection in crowded scenes

Tutorials

Convolutional Feature Maps: Elements of efficient (and accurate) CNN-based object detection

Codes

TensorBox: a simple framework for training neural networks to detect objects in images

Blogs

Convolutional Neural Networks for Object Detection

http://rnd.azoft.com/convolutional-neural-networks-object-detection/